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Abstract
In this paper, we study linear fractional differential equations with variable
coefficients. It is shown that, by assuming some conditions for the coefficients,
the stationarity–conservation laws can be derived. The area where these are
valid is restricted by the asymptotic properties of solutions of the respective
equation. Applications of the proposed procedure include the fractional
Fokker–Planck equation in (1 + 1)- and (d + 1)-dimensional space and the
fractional Klein–Kramers equation.

PACS numbers: 11.30.−j, 02.30.Jr, 02.30.−f

1. Introduction

The aim of this paper is to derive conserved currents for fractional differential equations.
For differential equations built within the framework of classical differential calculus, the
conservation laws are connected via the Noether theorem [1, 2] with the variational symmetry
of the action. In the modern theory of differential equations, methods of differential geometry
have also been developed and applied in the classification and derivation of conservation laws
(see [2–5], and references therein). For linear differential equations with constant coefficients,
the conserved currents can also be obtained using the simple procedure proposed by Takahashi
and Umezawa [6, 7] by which an explicit expression for a conserved current is calculated
without recourse to the Lagrange formalism.

They show that the solution of the operator equation∑
µ

(
←
∂
µ

+ ∂µ)�µ = �(∂)−�(−←∂ ) (1)

together with solutions� and �′ of initial and conjugated equations

�(∂)� = 0 �′�(−←∂ ) = 0 (2)
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yield components of the current obeying the conservation law

Jµ = �′�µ�
∑
µ

∂µJµ = 0. (3)

In this paper, we extend this method to fractional differential equations with variable
coefficients and we obtain stationarity–conservation laws. Fractional differential calculus
has been applied recently in some areas of physics. Nevertheless, the geometrical and
coordinate independent methods are not sufficiently developed for differential equations
including derivatives of fractional order, so we have chosen to apply an extension of the
technique which has proven to be useful also in the case of noncommutative and discrete
models [8–11]. It has been shown in these papers that ideas from classical differential calculus
on Minkowski space can also be applied in discrete and noncommutative differential calculus.
The difference lies in the deformation of Leibniz’s rule, where the additional transformation
operator appears. Due to this fact the modification of the classical method was necessary and by
this modified procedure we have derived conservation laws and an explicit form of conserved
currents for discrete and noncommutative models with constant and variable coefficients.

The concept of derivatives and integrals of fractional order dates back to the time of the
beginning of differential calculus and is connected with ideas and work by l’Hôpital, Leibniz,
Euler and Laplace. Since then, the extensive study of properties of fractional differential
and integral calculus has revealed similarities and differences between fractional and classical
calculi. The wide scope of fundamental and useful results is covered in monographies [12–16]
and references therein.

Section 2 contains a brief review of the fundamental properties of fractional operators
together with a construction of Leibniz’s rule in the convolution algebra of functions. We work
with Riemann–Liouville-type derivatives and integrals; while Leibniz’s rule is complicated
for standard point-wise multiplication, it is simplified for convolution algebra and allows an
extension of the Takahashi–Umezawa method to fractional equations.

In an earlier paper [17] we have investigated the construction of conservation laws for
fractional linear differential equations with constant coefficients. We now proceed to fractional
linear equations with variable coefficients subject to certain restrictions (24)–(26) which we
discuss in section 3.

We should point out that fractional differential calculus has recently found application in
various areas of physics [16, 18, 19]. The field where many interesting fractional equations
have been derived and studied in various aspects is anomalous transport. Starting with early
results for anomalous diffusion described by the fractional diffusion equation discussed by
Nigmatullin [20], Mainardi [21], Wyss and Schneider [22, 23], the fractional derivatives also
appear in the generalized equation of diffusion. The latter equation has been studied in the
context of transport on fractals by O’Shaughnessy and Proccacia [24], Giona and Roman [25]
as well as by Metzler and co-workers [26–28]. The properties of solutions discussed in these
papers show that their asymptotic behaviour differs from the classical diffusion equation and
it coincides with some experimental data.

The fractional diffusion equation arises also as the limiting dynamic equation for all
continuous time random walks with decoupled temporal and spatial memories and with
either temporal or spatial scale invariance [29, 30]. The diffusion equation then contains
the Riemann–Liouville time fractional derivative or the Riesz spatial one, respectively. The
model including both temporal and spatial fractional derivatives has been discussed recently
by Barkai [31] where the validity domain of the fractional diffusion equation was addressed.

When transport phenomena are investigated in the presence of the external force field, we
arrive at fractional equations with variable coefficients.
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One of the first and most widely investigated is the Fokker–Planck equation in fractional
formulation. This contains a fractional time derivative of Riemann–Liouville-type [32–38]
when the force field depends only on spatial coordinates. Time-dependent external fields have
been treated by Sokolov et al [39]; they assumed that the force field can be switched on and
off and they derived the fractional Fokker–Planck equation. This is expected to be applicable
to polymers and rough interfaces [40].

Fractional calculus is also useful in the context of Lévy flights which constitute a
generalization of ordinary Brownian walks. The step size in such a model is drawn from
Lévy distribution characterized by the step index. The built-in superdiffusive character of
Lévy flights has been used to model a variety of physical processes. In the presence of
a quenched random force field with arbitrary range and vector characteristic, the Fokker–
Planck equation for Lévy flights contains a fractional gradient operator with respect to spatial
coordinates [41–43].

The Brownian system subjected to a Lévy stable random force is described also in [44]
where fractional extension of the Klein–Kramers equation with Riesz fractional derivative in
momentum coordinates produces the Riemann–Liouvillederivative with respect to the position
in Fokker–Planck equation. The fractional Klein–Kramers equation in phase space has also
been discussed in [36, 45].

This brief review of some of the results concerning application of fractional differential
calculus shows that fractional derivatives are indeed present and useful in modern transport
theory. We focus throughout the paper on equations with Riemann–Liouville-type derivatives.
The general method of derivation of the stationarity–conservation laws is described in section3.
For a class of fractional differential equations, we also discuss the stationary and conserved
charges resulting from the assumption that for a given model the stationarity–conservation
law is valid for the whole space. Section 4 contains applications of the developed procedure
to fractional versions of Fokker–Planck, Klein–Kramers, Cattaneo and generalized diffusion
equations.

2. Fractional integrals and derivatives

2.1. Riemann–Liouville fractional integral and derivative for functions of one variable

Let us recall the definition of the Riemann–Liouville fractional integral [12–15] used widely
in the literature dealing with fractional calculus.

Definition 2.1. Let Re ν > 0 and let f be piece-wise continuous on (0,+∞) and integrable
on any finite subinterval of [0,+∞). Then for t > 0

D−νt f (t) := 1

�(ν)

∫ t

0
(t − s)ν−1f (s) ds (4)

is the Riemann–Liouville fractional integral of f of the order ν.

We notice that the above definition includes the operation of the Laplace convolution, namely
it can be written as

D−νt f (t) = �−ν ∗ f (t) = f ∗�−ν(t) (5)

where we have denoted�−ν(t) = 1
�(ν)

tν−1.
The fractional integral satisfies the composition rule which is the generalization of the

Dirichlet formula [12–15]

D−νt D
−µ
t f (t) = D−(ν+µ)

t f (t) = D−µt D−νt f (t) (6)

for Reµ,Re ν > 0 and for any function f piece-wise continuous on [0,+∞).
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Let us now present the known forms of Leibniz’s rule for fractional integral (4)

D−νt (f · g) =
∞∑
j=0

(−ν
j

)
D
−ν−j
t f · g(j) (7)

where f and g are real analytic functions on [0,+∞). This rule was generalized by Osler
[12, 46–48] who obtained the following forms of Leibniz’s rule:

D−νt (f · g) =
+∞∑

j=−∞

�(−ν + 1)

�(−ν − γ − j + 1)�(γ + j + 1)
D
−ν−γ−j
t f ·Dγ+j

t g (8)

D−νt (f · g) =
∫ +∞

−∞

�(−ν + 1)

�(−ν − γ − λ + 1)�(γ + λ + 1)
D
−ν−γ−λ
t f ·Dγ+λ

t g dλ (9)

where γ is an arbitrary complex number.
We notice that when the algebra of functions is defined by standard point-wise

multiplication, as in the above formulae, all versions of Leibniz’s rule are very complicated.
Thus, we have proposed [17] to investigate the algebra of functions with multiplication

defined via the Laplace convolution

f ∗ g(t) :=
∫ t

0
f (t − s)g(s) ds. (10)

As is well known, this multiplication is associative and commutative. The neutral element
is the Dirac δ-function. In this algebra the following rule is valid for Re ν > 0 and γ is a
complex number fulfilling Re(ν − γ ) � 0 [17]:

D−νt (f ∗ g) = (D−(ν−γ )t f
) ∗D−γt g. (11)

Thus, Leibniz’s rule in algebra (10) is deformed (nevertheless much simpler than the above
Leibniz’s rules in the algebra of point-wise multiplication)

D−νt (f ∗ g) = β (D−νt f
) ∗ g + (1− β)f ∗ (D−νt g

)
(12)

where β ∈ [0, 1].
The fractional derivation is connected with the fractional integral (4). The operator known

as the Riemann–Liouville fractional derivative [12–15] is defined as follows.

Definition 2.2. Let m � Re ν < m + 1, t > 0. The operator given by formula

Dν
t :=

(
d

dt

)m+1

D
−(m−ν+1)
t f (t) (13)

for functions for which the improper integral on the right-hand side of equation (13) is
convergent, is called the Riemann–Liouville fractional derivative of the order ν.

Let us notice that the functions from the domain of the Dν
t operator form the subset in the set

of functions from definition 2.1. It is well described in the literature [12–15].
Contrary to the fractional integrals, the derivative (13) cannot be expressed using only

convolution. The formula includes the classical derivative and looks as follows,

Dν
t f (t) :=

(
d

dt

)m+1

(f ∗�ν−m(t)) (14)

with the function�ν−m = t−ν+m

�(m+1−ν) .
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We expect the fractional derivative to obey the composition rule analogous to that for the
fractional integral. In fact [12, 13] the following formula is valid,

Dν
t D

µ
t f = Dν+µ

t f (15)

provided:

• Re ν > 0,Re(ν + µ) > 0;
• f is of the form f = D−(ν+µ)

t ψ where ψ ∈ L1[0, b] which means
∫ b

0 | ψ(t) | dt <∞.

The above formula shows that fractional derivatives of different orders do not always commute
as is the case with fractional integrals.

Leibniz’s rule for fractional derivative has the following form for analytic functions
[12, 13, 46–48]

Dν
t f · g =

∞∑
k=0

(ν
k

)
f (k) ·Dν−k

t g. (16)

Similarly to the case of the fractional integral, for the fractional derivative Leibniz’s rule can
also be simplified in the algebra of functions (10). To this aim, the following Lemma is
applied [17].

Lemma 2.1. Let m � Re ν < m + 1 and the function g be piece-wise continuous in (0,+∞).
If the fractional derivative of function f does exist and the function itself fulfils the condition

lim
t→0+

f (k) ∗�ν−m = 0

for k = 0, 1, . . . ,m then the following rule holds:

Dν
t (f ∗ g) =

(
Dν
t f
) ∗ g. (17)

The above set of right-sided limits determines the behaviour of the function f in the
neighbourhood of t = 0, namely f (t) ∼ tβ where β is a complex number fulfilling the
condition, Re β > −1 + Re ν.

The symmetric version of formula (17) follows from the commutativity of the Laplace
convolution.

Corollary 2.2. We let m � Re ν < m + 1 and functions f and g are piece-wise continuous in
(0,+∞). If both functions f, g obey the assumptions from lemma 2.1 then the following rule
holds,

Dν
t (f ∗ g) = β

(
Dν
t f
) ∗ g + (1− β)f ∗ (Dν

t g
)

(18)

for β ∈ [0, 1].

2.2. Riemann–Liouville partial fractional derivatives

For functions of many variables, the partial fractional derivative of Riemann–Liouville-type
is defined by the formula [15, 17]

D
αk
k f (�x) := 1

�(mk + 1− αk)
(
∂xk
)mk+1

∫ xk

0
(xk − s)−αk+mkf (�x + (s − xk)�ek) ds (19)

where mk � Reαk < mk + 1. The upper index in the formula denotes the fractional order
of the partial derivative while the lower index denotes that it was taken with respect to
coordinate xk.
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Let x1, . . . , xm be a subset of coordinates in our n-dimensional model for which the
fractional partial derivatives (19) appear in the equation. Then we define multiplication of
functions using the Laplace convolution in the following form.

Definition 2.3. The algebra of functions is defined by the multiplication formula

f ∗ g(�x) :=
∫ x1

0
...

∫ xm

0
f

(
�x −

m∑
l=1

sl �el
)
g

(
�x +

m∑
l=1

(sl − xl)�el
)

ds1 · · · dsm (20)

where (�el)k = δlk.
Similarly to the one-dimensional case, the multiplication (20) is associative and commutative.

In the above algebra of functions, Leibniz’s rule (18) given by corollary 2.2 is valid for
functions fulfilling the respective assumptions concerning their behaviour at xk = 0

D
αk
k f ∗ g = βk

(
D
αk
k f

) ∗ g + (1− βk)f ∗Dαk
k g (21)

with βk ∈ [0, 1] for k = 1, . . . ,m.
For classical derivatives acting by assumption in directions j = m + 1, . . . , n we obtain

for convolution (20) the standard form of Leibniz’s rule

∂j (f ∗ g) = (∂jf ) ∗ g + f ∗ ∂jg. (22)

3. Stationarity–conservation laws for some fractional partial equations

We discuss the general construction of stationarity–conservation laws assuming that regular—
in the sense of lemma 2.1—solutions of the respective fractional differential equations exist
at least in a certain area of space.

3.1. Mixed fractional differential and differential partial equations

Let us consider the general equation which contains the fractional and differential parts of the
following form:

�(D, ∂)φ = [�̃(D) +�(∂)]φ =
(

m∑
k=1

�̃kD
αk
k +

N∑
l=1

�µ1···µl ∂
µ1 · · · ∂µl +�0

)
φ = 0. (23)

We study the construction for the homogeneous form of the equation remembering that the
addition of the initial terms restricts only the area of application of the stationarity equation
and does not change the general construction. We assume that for given variables x1, . . . , xm
the equation includes only fractional derivatives in �̃(D) while for the remaining coordinates
xm+1, . . . , xn only partial derivatives appear in the operator�(∂).

The coefficients (we also allow matrices) of the equation depend on coordinates and
should obey the restriction in the form (l = 1, . . . , N)

∂µ1�µ1···µl = 0 (24)

∂k�µ1···µl = 0 k = 1, . . . ,m (25)

∂k�̃j = 0 k, j = 1, . . . ,m. (26)

In addition, as partial derivatives commute, we expect the coefficients� to be symmetric with
respect to the permutation of each set of indices (µ1 · · ·µl).
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To derive the stationarity–conservation law, we use the Takahashi–Umezawa method
[6, 7] (which we have extended to equations with variable coefficients) for the differential part
�(∂) and the fractional Leibniz’s rule (18) for the part �̃(D) containing fractional operators.

Each direction of the space yields the component of the current which for coordinates
x1, . . . , xk is given by the �̃ operator of the form

�̃k = 2�̃k (27)

while for the part j = m + 1, . . . , n, we obtain [7]

�j =
N−1∑
l=1

l∑
k=1

�jµ1 ···µl (−
←
∂
µ1
) · · · (−←∂ µk )∂µk+1 · · · ∂µl . (28)

It is a well-known fact that, for an arbitrary pair of functions f and g, the operator � fulfils
the equality

n∑
j=m+1

∂jf ∗ �jg = −f�(−←∂ ) ∗ g + f ∗�(∂)g (29)

where the multiplication is given by the convolution (20) and�(−←∂ ) is the conjugated operator
for�(∂) acting on the left-hand side.

The above property of the�operator together with Leibniz’s rule (18) for fractional deriva-
tives (taken with parameters βk = 1

2 , k = 1, . . . ,m) implies that the following proposition
is valid.

Proposition 3.1. Let the function φ be a solution of equation (23) and let φ′ solve the
conjugated equation

φ′�(−←D,−←∂ ) = φ′[�̃(−←D) +�(−←∂ )]

= φ′
(
−

m∑
k=1

�̃k

←
D
αk

k +
N∑
l=1

�µ1...µl (−
←
∂
µ1
) · · · (−←∂ µl ) +�0

)
= 0. (30)

Then the current given by the components

Jk = φ′ ∗ �̃kφ k = 1, . . . ,m (31)
Jj = φ′ ∗ �jφ j = m + 1, . . . , n (32)

fulfils the stationarity–conservation equation
m∑
k=1

D
αk
k Jk +

n∑
j=m+1

∂jJj = 0 (33)

provided the solutions φ and φ′ fulfil the conditions of lemma 2.1 in the neighbourhood of
xk = 0, k = 1, . . . ,m.

Proof. We check the law (33) explicitly:
m∑
k=1

D
αk
k Jk +

n∑
j=m+1

∂jJj

=
m∑
k=1

D
αk
k (φ

′ ∗ �̃kφ + φ′�̃k ∗ φ) +
n∑

j=m+1

∂j (φ′ ∗ �jφ)

=
m∑
k=1

(
D
αk
k φ
′) �̃k ∗ φ +

m∑
k=1

φ′ ∗ �̃kD
αk
k φ − φ′�(−

←
∂ ) ∗ φ + φ′ ∗�(∂)φ

= −φ′�(−←D,−←∂ ) ∗ φ + φ′ ∗�(D, ∂)φ = 0.
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Thus, for every equation of the form (23) we can produce an exact form of the stationary–
conserved current provided the initial equation and its conjugation have solutions which fulfil
the asymptotic conditions at xk = 0, k = 1, . . . ,m allowing the application of Leibniz’s rule
for fractional partial derivativesDαk

k .
Let us point out that the conjugated equations (30) and (41) are analogues of the

characteristic equation for the conservation laws from the theory of partial differential
equations [2]. Each solution of the characteristic equation yields a conserved current. In
the case of models including fractional derivatives we call this the stationarity–conservation
law.

The stationarity–conservation equation (33) can be rewritten in the form of the standard
conservation law for modified components of the above current (mk < αk < mk + 1, k =
1, . . . ,m)

J ′k = (∂k)mk
(
Jk ∗k �αk−mk

)
k = 1, . . . ,m (34)

J ′j = Jj j = m + 1, . . . , n (35)

where the convolution ∗k is given by the formula

f ∗k g(�x) =
∫ xk

0
f (�x − s�ek)g(�x + (s − xk)�ek) dsk. (36)

The new current J ′ obeys the conservation law
n∑
l=1

∂lJ ′l = 0. (37)
�

3.2. Mixed fractional sequential and differential partial equations

In the previous construction we have considered the fractional part of the operator including
only the first power of the corresponding partial fractional derivatives, while in the differential
part we have taken an arbitrary polynomial of partial derivatives. We extend the derivation
of the stationarity–conservation laws to the general case containing both the polynomial of
fractional derivatives and the polynomial of classical partial derivatives

�(D, ∂)φ = [�̃(D) +�(∂)]φ

=
(

M∑
k=1

�̃ρ1···ρkD
α1
ρ1
· · ·Dαk

ρk
+

N∑
l=1

�µ1···µl ∂
µ1 · · · ∂µl +�0

)
φ = 0. (38)

The derivatives with respect to the coordinates x1, . . . , xm are the fractional Dαi
ρi

where the
upper index denotes the fractional order and the lower index denotes the respective partial
direction. The part depending on fractional derivatives now has the form of a partial sequential
fractional operator generalizing the sequential operator for one-dimensional space [13]. The
coefficients� and �̃ are again functions or matrices of functions obeying the main condition
(24)–(26). As the derivatives with respect to different coordinates do commute, both types of
coefficients are fully symmetric with respect to the permutation of the set of indices.

To obtain the � operator fulfilling equation (29) we again use the extended Takahashi–
Umezawa method for the differential part�(∂) and we obtain the components �j as given by
equation (28) whereas for �̃ we have

�̃k = 2
M−1∑
j=1

j∑
l=1

�̃kρ1···ρj
(
−←Dα1

ρ1

)
· · ·
(
−←Dαl

ρl

)
Dαl+1
ρl+1
· · ·Dαj

ρj . (39)
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It is easy to check the analogue of formula (29) for the operator �̃
m∑
k=1

D
αk
k (f ∗ �̃kg) = −f �̃(−

←
D) ∗ g + f ∗ �̃(D)g (40)

for an arbitrary pair of functions f and g allowing the application of Leibniz’s rule (18)
together with their fractional derivativesDαl+1

ρl+1
· · ·Dαj

ρj g and f
(−←Dα1

ρ1

) · · · (−←Dαl

ρl

)
.

The following proposition generalizes the result obtained for the equation with constant
coefficients [17].

Proposition 3.2. Let the function φ be a solution of equation (38) and let φ′ be a solution of
the conjugated equation in the form

0 = φ′�(−←D,−←∂ )

= φ′
(

M∑
k=1

�̃µ1···µk
(
−←Dα1

µ1

)
· · ·
(
−←Dαk

µk

)
+

N∑
l=1

�µ1···µl (−
←
∂
µ1
) · · · (−←∂ µl ) +�0

)
.

(41)

Then the current with the following components,

Jk = φ′ ∗ �̃kφ k = 1, . . . ,m (42)

Jj = φ′ ∗ �jφ j = m + 1, . . . , n (43)

obeys the stationarity–conservation equation
m∑
k=1

D
αk
k Jk +

n∑
j=m+1

∂jJj = 0 (44)

provided the solutions φ and φ′, together with their derivatives appearing in the formulae
for components (42), fulfil the conditions of lemma 2.1 in the neighbourhood of xk = 0, k =
1, . . . ,m.

Proof . We use the properties of the solutions and of the operators � and �̃ and obtain
n∑

j=m+1

∂jJj =
n∑

j=m+1

∂j (φ′ ∗ �jφ) = −φ′�(−←∂ ) ∗ φ + φ′ ∗�(∂)φ

m∑
k=1

D
αk
k Jk =

m∑
k=1

D
αk
k (φ

′ ∗ �̃kφ) = −φ′�̃(−←D) ∗ φ + φ′ ∗ �̃(D)φ.

Thus the left-hand side of the stationarity–conservation formula is of the form
m∑
k=1

D
αk
k Jk +

n∑
j=m+1

∂jJj

= −φ′(�̃(−←D) +�(−←∂ ) +�0) ∗ φ + φ′ ∗ (�̃(D) +�(∂) +�0)φ = 0

and vanishes on shell.
We can rewrite the stationarity–conservation law to have the conservation law connected

with equation (38). To this aim we apply the definition of the Riemann–Liouville fractional
derivative (19). The modified components of the current have a form similar to that derived in
the previous section (mk < αk < mk + 1, k = 1, . . . ,m)
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J ′k = (∂k)mk
(
Jk ∗k �αk−mk

)
k = 1, . . . ,m (45)

J ′j = Jj j = m + 1, . . . , n (46)

with the convolution ∗k given by equation (36).
They obey the conservation law

n∑
l=1

∂lJ ′l = 0. (47)
�

3.3. Stationary and conserved charges for mixed fractional–differential models

Let us assume that the stationarity–conservation law for a given model is valid in the whole
space of coordinates.

Two cases should be considered: when the time derivative in the operator of the equation
is a fractional and when it is standard partial one.

Let us assume that the time derivative in equations (23) and (38) is a fractional one.
Integrating the time component of the current fulfilling the stationarity–conservation equation
(33) and (44) we arrive at the charge

Q =
∫
Rn−1

d�x Jt(�x, t) (48)

which is a stationary function of the order αt which also determines the order of the fractional
time derivative

D
αt
t Q = 0 (49)

provided the respective boundary terms vanish.
For components Jj , j = m + 1, . . . , n, this means that they vanish at infinity in the

respective j -direction while the components Jk, k = 2, . . . ,m, obey the asymptotic condition

lim
|xk |→∞

(∂k)mk
(
Jk ∗k �αk−mk

) = 0 (50)

wheremk < αk < mk + 1.
The above fractional stationarity proposed by Hilfer [49] generalizes constant functions.

In fact, the stationary charge fulfilling (49) is a linear combination of power functions with
exponents depending on a value of αt .

The second case is the model with a standard time derivative. Then the charge

Q =
∫
Rn−1

d�x Jt(�x, t) (51)

is a strictly stationary function of time, which means that it is a true constant function

∂tQ = 0 (52)

when the asymptotic conditions described above for respective components of the currents are
fulfilled.

The exact form of the symmetry algebra of the equations (23) and (38) vary for different
examples. Let us, however, notice that it includes, for all of these, the momenta

Pk = Dαk
k k = 1, . . . ,m (53)

Pj = ∂j j = m + 1, . . . , n (54)

as they commute with the operator of these equations.



Stationarity–conservation laws for fractional differential equations with variable coefficients 6685

However, if we propose to use the above momenta in derivation of conserved currents and
charges, we must additionally assume the regular behaviour of the W(D)Pkφ and W(D)Pj φ
functions in the neighbourhood of zero with respect to the x1, . . . , xm coordinates (W(D)
denote the polynomials of fractional derivatives appearing in the formula for �̃ operator).

When this assumption is fulfilled, the stationary–conserved currents yield the charges

Qδ =
∫
Rn−1

d�x φ′ ∗ �̃t δφ (55)

for the case where the time derivative is fractional and for the standard time derivative,
respectively,

Qδ =
∫
Rn−1

d�x φ′ ∗ �tδφ (56)

where δ is one of the momentum operators given in equations (53) and (54).

4. Applications

4.1. Fractional equation for anomalous diffusion

Let us start the application of the proposed procedure with the fractional equation describing
anomalous diffusion. This has been discussed in the general form by Metzler et al [26], and
earlier in [24, 25], and includes the fractional time derivative[

Dα
t −

1

rD−1
∂rr−�rD−1∂r − β

r2

]
P(r, t) = 0 (57)

where D is the Hausdorff dimension of the underlying fractal structure, � is connected with
the anomalous diffusion parameter dw = 2 +� and α = 2/dw.

The conjugated equation (30) looks as follows for the considered model:

P̃ (r, t)

[
−←Dα

t −
1

rD−1

←
∂
r
r−�rD−1←

∂
r − β

r2

]
= 0. (58)

Both equations (57) and (58) should be modified in order to obtain the form obeying the main
restriction for variable coefficients (24)–(26). The new density functions are connected with
probability density functions P and P̃ by the formula

P(r, t) = ρ(r)W(r, t) ρ(r) = r �−D+1
2 (59)

P̃ (r, t) = ρ̃(r)W̃ (r, t) ρ̃(r) = r �+D−1
2 (60)

ρ(r)ρ̃(r) = r�. (61)

Written for modified functionsW and W̃ , equations (57) and (58) look as follows,[
r�Dα

t − (∂r)2 − V (r)
]
W(r, t) = 0 (62)

W̃ (r, t)
[
−r�←Dα

t − (
←
∂
r
)2 − V (r)

]
= 0 (63)

with the potential V in the form

V (r) = r−2

[
�−D + 1

2
+
(�−D + 1)2

4

]
+ βr�−2. (64)

It is clear that the modified equations (62) and (63) fulfil the main conditions (24)–(26), namely

∂r�rr = 0 ∂t�rr = 0 ∂t �̃t = 0. (65)
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Thus, proposition 3.1 can be applied to obtain the components of the � operator

�̃t = 2r� (66)

�r =←∂ r − ∂r (67)

and the components of the current

Jt = W̃ (r, t) ∗ �̃tW(r, t) = 2P̃ (r, t) ∗ P(r, t) (68)

Jr = W̃ (r, t) ∗ �rW(r, t) = 1−D
r�+1

P̃ (r, t) ∗ P(r, t) + P̃ (r, t) ∗ �rP (r, t) (69)

where we understand the convolution ∗ in the sense of definition (20), which means that it is
taken with respect to the time coordinate.

The above current fulfils the stationarity–conservation law

Dα
t Jt + ∂rJr = 0 (70)

and after modification using formulae (34) and (35) (m < α < m + 1)

J ′t = Jt ∗
t−α+m

�(m + 1− α) (71)

J ′r = Jr (72)

we arrive at the conservation law

∂tJ ′t + ∂rJ ′r = 0 (73)

which is valid together with the stationarity–conservation law (70) in the area where the
solutionsW and W̃ used in the construction obey the asymptotic conditions of lemma 2.1.

Let us now assume that the solutions obey the above condition in the whole space. Then
the charge

Q =
∫

drJt =
∫

dr 2P̃ (r, t) ∗ P(r, t) (74)

is a stationary quantity of the order α

Dα
t Q = 0. (75)

4.2. 1 + 1 fractional Fokker–Planck equation

Let us now study the fractional Fokker–Planck equation. This equation describes anomalous
diffusion in an external force field and close to the thermal equilibrium. Widely discussed
in the literature [32–36] (see also references therein) it applies to the case when the process
has started at t = 0, the external field is weak and its influence on the waiting time density is
negligible [32]. Written in standard homogeneous form it reads as follows,[

∂t −D1−α
t Kα

(
(∂x)2 − ∂x F (x)

kBT

)]
P(x, t) = 0 (76)

where D1−α
t is the fractional Riemann–Liouville derivative (13) with α ∈ (0, 1), (kBT )−1 is

the Boltzmann factor and Kα is the generalized diffusion coefficient.
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The above equation is also investigated in the non-homogeneous version containing the
initial value of the probability density function[

Dα
t −Kα

(
(∂x)2 − ∂x F (x)

kBT

)]
P(x, t) = P0(x)

t−α

�(1− α) . (77)

The conjugated counterpart of the fractional Fokker–Planck equation reads as follows:

P̃ (x, t)

[
−←Dα

t −Kα
(
(
←
∂
x
)2 +

←
∂
x F (x)

kBT

)]
= P̃ 0(x)

t−α

�(1 − α) . (78)

We should notice here that equations (77) and (78) do not satisfy the restrictions (24)–(26) for
coefficients. Thus, both of these should be reformulated similarly to the previous example,

P(x, t) = ρ(x)W(x, t) ρ(x) = exp

(∫
F(x)

2kBT
dx

)
(79)

P̃ (x, t) = ρ̃(x)W̃(x, t) ρ̃(x) = exp

(
−
∫
F(x)

2kBT
dx

)
(80)

ρ(x)ρ̃(x) = 1. (81)

Equations (77) and (78) written for the modified density functions obey the condition (24)–(26)
and look as follows:[

Dα
t −Kα(∂x)2 − V (x)

]
W(x, t) = P0(x)

ρ(x)
· t−α

�(1− α) (82)

W̃ (x, t)
[
−←Dα

t −Kα(
←
∂
x
)2 − V (x)

]
= P̃ 0(x)

ρ̃(x)
· t−α

�(1− α) (83)

V (x) = −Kα
[(

F(x)

2kBT

)′
+

(
F(x)

2kBT

)2
]
. (84)

Following the general method for equations of type (23) we arrive at the components of the �
operator

�̃t = 2 �x = Kα←∂ x −Kα∂x. (85)

In the following we obtain the components of the current:

Jt = W̃ (x, t) ∗ �̃tW(x, t) = 2P̃ (x, t) ∗ P(x, t) (86)

Jx = W̃ (x, t) ∗ �xW(x, t)
= KαF(x)

kBT
P̃ (x, t) ∗ P(x, t) + P̃ (x, t) ∗ �xP(x, t). (87)

The derived current obeys the stationarity–conservation law

Dα
t Jt + ∂xJx = 0 (88)

in the area where P0(x)

ρ(x)
= P̃ 0(x)

ρ̃(x)
= 0 and solutionsW, W̃ fulfil the asymptotic conditions from

lemma 2.1:

lim
t→0+0

W(x, t) ∗ t−α

�(1− α) = lim
t→0+0

W̃ (x, t) ∗ t−α

�(1 − α) = 0. (89)

The current (86) and (87) yields the conserved one

J ′t = Jt ∗
t−α

�(1− α) J ′x = Jx (90)

which obeys the conservation law

∂tJ ′t + ∂xJ ′x = 0 (91)

valid in the area described above for the stationarity–conservation law (88).
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4.3. d + 1 fractional Fokker–Planck equation

The generalized fractional Fokker–Planck equation [38] in the non-homogeneousversion takes
the form [

Dα
t −Kα	 +

Kα

kBT
�∂ · �F(�x)

]
P(�x, t) = P0(�x) t−α

�(1 − α) (92)

with α ∈ (0, 1), 	 = �∂ · �∂ and the external force field determined by the potential, �F = �∂U .
The conjugated counterpart for equation (92) looks as follows:

P̃ (�x, t)
[
−←Dα

t −Kα
←	 − Kα

kBT

←�∂ · �F(�x)
]
= P̃ 0(�x) t−α

�(1 − α) . (93)

Similarly to the (1 + 1)-dimensional case, we modify the probability density functions

P(�x, t) = ρ(�x)W(�x, t) ρ(�x) = exp

(
U(�x)
2kBT

)
(94)

P̃ (�x, t) = ρ̃(�x)W̃ (�x, t) ρ̃(�x) = exp

(
−U(�x)

2kBT

)
(95)

ρ(�x)ρ̃(�x) = 1. (96)

Equations (92) and (93) reformulated for the new density functions satisfy the main
condition (24)

[
Dα
t −Kα	− V (�x)

]
W(�x, t) = P0(�x)

ρ(�x) ·
t−α

�(1 − α) (97)

W̃ (�x, t)
[
−←Dα

t −Kα
←	 −V (�x)

]
= P̃ 0(�x)

ρ̃(�x) ·
t−α

�(1 − α) (98)

V (�x) = −Kα
[
�∂ ·

�F
2kBT

+
�F

2kBT
·
�F

2kBT

]
. (99)

Following proposition 3.1, we obtain the components of the � operator (j = 1, . . . , d)

�̃t = 2 (100)

�j = Kα←∂ j −Kα∂j (101)

which respectively give the components of the current

Jt = W̃ (�x, t) ∗ �̃tW(�x, t) = 2P̃ (�x, t) ∗ P(�x, t) (102)

Jj = W̃ (�x, t) ∗ �̃jW(�x, t)
= KαFj (�x)

kBT
P̃ (�x, t) ∗ P(�x, t) + P̃ (�x, t) ∗ �jP (�x, t) (103)

where the convolution is taken with respect to the time coordinate according to the
definition (20).

The constructed current obeys the stationarity–conservation law

Dα
t Jt + �∂ · �J = 0 (104)
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in the area where the initial conditions vanish

P0(�x)
ρ(�x) =

P̃ 0(�x)
ρ̃(�x) = 0 (105)

and the asymptotic conditions of lemma 2.1 are fulfilled,

lim
t→0+0

W(�x, t) ∗ t−α

�(1− α) = lim
t→0+0

W̃ (�x, t) ∗ t−α

�(1 − α) = 0. (106)

After modification of the time component of the current (102)

J ′t = Jt ∗
t−α

�(1− α) J ′j = Jj (107)

we obtain the conservation law

∂tJ ′t + �∂ · �J ′ = 0 (108)

valid in the area defined by the conditions (105) and (106).

4.4. Fractional Klein–Kramers equation

The fractional Fokker–Planck equation considered in the previous sections can be deduced
from the fractional Klein–Kramers equation [36, 37]. This is a bivariate equation describing
the motion of a test particle of mass m under the influence of an external force field F in phase
(position-velocity) space. The fractional form of the equation is connected with diverging
characteristic time[
∂t −D1−α

t

(
−v∗∂x + ∂v

(
η∗v − F

∗(x)
m

)
+
η∗kBT
m

(∂v)2
)]
P(x, v, t) = 0 (109)

where the following notation is used

v∗ = v τ
∗

τα
η∗ = η τ

∗

τα
F ∗(x) = F(x) τ

∗

τα
. (110)

Here, η denotes the friction constant, kBT is the Boltzmann temperature, τ ∗ is the mean time
step, τ is the internal timescale, α ∈ (0, 1).

Written in non-homogeneous form, the Klein–Kramers equation looks as follows:[
Dα
t −

(
−v∗∂x + ∂v

(
η∗v − F

∗(x)
m

)
+
η∗kBT
m

(∂v)2
)]
P(x, v, t) = P0(x, v) · t−α

�(1 − α) .
(111)

The conjugated partner has the following form according to formula (30):[
−Dα

t −
(
v∗∂x −

(
η∗v − F

∗(x)
m

)
∂v +

η∗kBT
m

(∂v)2
)]
P̃ (x, v, t) = P̃ 0(x, v) · t−α

�(1− α) .
(112)

The above equations do not obey the conditions (24)–(26) describing the admissible variable
coefficients. Thus, we modify the probability density functions

P(x, v, t) = ρ(v)W(x, v, t) ρ(v) = exp

(
mv2

4kBT

)
(113)

P̃ (x, v, t) = ρ̃(v)W̃ (x, v, t) ρ̃(v) = exp

(
− mv2

4kBT

)
(114)

ρ(v)ρ̃(v) = 1. (115)



6690 M Klimek

Written for the above modified density functions, the fractional Klein–Kramers equation
and its conjugation take the form[
τα

τ ∗
Dα
t + v∂x +

F(x)

m
∂v +

ηkBT

m
(∂v)2 + V (x, v)

]
W(x, v, t)

= P0(x, v)

ρ(v)
· t−α

�(1− α) ·
τα

τ ∗
(116)

[
−τ

α

τ ∗
Dα
t − v∂x −

F(x)

m
∂v +

ηkBT

m
(∂v)2 + V (x, v)

]
W̃ (x, v, t)

= P̃ 0(x, v)

ρ̃(v)
· t−α

�(1 − α) ·
τα

τ ∗
(117)

with the potential

V (x, v) = −η
2

+
F(x)v

2kBT
− mηv

2

4kBT
. (118)

Analysing the form of the modified Klein–Kramers equation we conclude that it obeys the
conditions (24)–(26), namely

∂x�x + ∂v�v = 0 ∂v�vv = 0 (119)

∂t�v = 0 ∂t�vv = 0 (120)

∂t�x = 0 ∂t�̃t = 0. (121)

Thus, we now apply proposition 3.1 to construct the components of the � operator

�̃t = 2
τα

τ ∗
�x = v �v = F(x)

m
+
ηkBT

m
(−←∂ v + ∂v) (122)

which in turn produce the components of the current

Jt = W̃ (x, v, t) ∗ �̃tW(x, v, t) = 2
τα

τ ∗
P̃ (x, v, t) ∗ P(x, v, t) (123)

Jx = W̃ (x, v, t) ∗ �xW(x, v, t) = vP̃ (x, v, t) ∗ P(x, v, t) (124)

Jv = W̃ (x, v, t) ∗ �vW(x, v, t)
=
(
F(x)

m
− ηv

)
P̃ (x, v, t) ∗ P(x, v, t)

+
ηkBT

m
P̃ (x, v, t) ∗ (−←∂ v + ∂v)P (x, v, t). (125)

The constructed current obeys the stationarity–conservation law

Dα
t Jt + ∂xJx + ∂vJv = 0 (126)

in the area of phase space where the initial terms vanish

P0(x, v) = P̃ 0(x, v) = 0 (127)

and the asymptotic conditions of lemma 2.1 are fulfilled,

lim
t→0+0

W(x, v, t) ∗ t−α

�(1− α) = lim
t→0+0

W̃ (x, v, t) ∗ t−α

�(1 − α) = 0. (128)
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In the same area given by equations (127) and (128) the modified current

J ′t = Jt ∗
t−α

�(1− α) J ′x = Jx J ′v = Jv (129)

obeys the conservation law

∂tJ ′t + ∂xJ ′x + ∂vJ ′v = 0. (130)

4.5. Generalized Cattaneo equation

Let us close the review of applications with the generalized Cattaneo equation [27, 28] in
(1 + 1)-dimensional space. This equation has constant coefficients, nevertheless it yields an
interesting example of mixed fractional sequential and differential model of type (38)[

Dα
t + τα

(
Dα
t

)2 −D(∂x)2
]
P(x, t) = 0 (131)

whereα ∈ (0, 1),D is the diffusion constant and τ is defined by the finite propagation velocity,
namely v = √D/τ .

The conjugated Cattaneo equation looks as follows:

P̃ (x, t)

[
−←Dα

t + τα
(←
D
α

t

)2
−D(←∂ x)2

]
= 0. (132)

For the Cattaneo equation of type (131) we obtain the components of the � operator

�̃t = −2τα
←
D
α

t + 2ταDα
t − 2 (133)

�x = D←∂ x −D∂x (134)

which determine the components of the current

Jt = P̃ (x, t) ∗ �̃tP (x, t) (135)

Jx = P̃ (x, t) ∗ �xP(x, t) (136)

where the convolution is taken with respect to the time coordinate.
The derived current satisfies the stationarity–conservation law

Dα
t Jt + ∂xJx = 0. (137)

After modification of the time component of the current (135) and (136)

J ′t = Jt ∗
t−α

�(1− α) J ′x = Jx (138)

we arrive at the conservation law

∂tJ ′t + ∂xJ ′x = 0. (139)

Let us point out that both conservation laws (137) and (139) are valid in the area where the
asymptotic conditions

lim
t→0+0

P(x, t) ∗ t−α

�(1− α) = lim
t→0+0

P̃ (x, t) ∗ t−α

�(1 − α) = 0 (140)

lim
t→0+0

Dα
t P (x, t) ∗

t−α

�(1 − α) = lim
t→0+0

Dα
t P̃ (x, t) ∗

t−α

�(1 − α) = 0 (141)

are fulfilled according to lemma 2.1.
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As the Cattaneo equation has an homogeneous form and the validity domain of the
stationarity–conservation law depends only on properties of solutions, we can construct the
stationary charge

Q =
∫

dxJt Dα
t Q = 0 (142)

assuming that the solutions obey the conditions (140) and (141) for arbitrary x ∈ R.

5. Final remarks

We have developed a method for deriving the stationarity–conservation law for linear fractional
differential equations with variable coefficients. The validity domain of these laws is restricted
both by the asymptotic properties of solutions and for some models by initial and boundary
conditions.

In general, the obtained currents are non-local quantities due to the multiplication of
functions defined via Laplace convolution. In this paper, we have focused on models
with Riemann–Liouville-type fractional derivatives. Examples containing other fractional
derivatives are still under investigation.
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